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We investigate the three-dimensional characteristics of a general class of resonant 
temporal instabilities of internal gravity waves, in which the disturbance comprises 
two infinitesimal internal gravity waves satisfying the conditions w, + w f r  = n&, 
k ,  + k,, = nk ,  with growth rates of order N(lfi1 IkI /N)",  assuming small dimensional 
primary-wave velocity amplitude (El. We derive simple equations for their wave- 
numbers, frequency, growth rate, and energy budget. Interactions inTrolving more than 
two disturbance components are shown not to represent distinct families of solutions, 
but rather to comprise order transitions linking together two or more ' two-disturbance- 
component' solutions of different order M. Unlike I I  = 1 resonant instabilities, those 
with n 3 3 can align with the wave shear flow. We calculate the peak growth rate, 
spanwise wabenumber, and energy budget of shear-aligned resonance, as functions of 
wave frequency; they extract energy from both the wave shear and buoyancy fields. 

1. Introduction 
Recent simulations (Winters & D'Asaro 1994; Fritts, Isler & Andreassen 1994) and 

observations (Fritts, Isler & Thomas 1993) of large-amplitude internal gravity waves 
have highlighted the importance of shear-aligned instabilities. These results would 
seem to be in accordance with a wealth of evidence that in a variety of flows convective 
instabilities often take the form of shear-aligned rolls (Kelly 1977; Clever & Busse 
1977; Klaassen & Peltier 1985, 1991; Mclntyre 1989). An internal gravity wave 
comprises a non-horizontal, oscillating, stratified, parallel shear flow which permits 
shear-aligned orientation of secondary instability even in the absence of background 
shear. Indeed, Thorpe (1994) found shear-aligned linear instability to dominate for the 
vertical profiles associated with a moderately overturned zero-frequency wave in a 
static background. 

Small-amplitude waves are subject to resonant instabilities (Phillips 1960, 1966), the 
most familiar of which comprise pairs of waves (denoted I and ZI) whose frequencies 
w and wavenumbers k are related to those of the primary wave (denoted with a tilde) 
through the condition + w , ,  = G, k ,  + k , ,  = k. Each disturbance wavenumber of 
these lowest-order resonances must have a component parallel to the primary-wave 
parcel motions, thus excluding the possibility of shear-aligned instability. As we shall 
demonstrate, higher-order resonances do not share this exclusion. Hasselmann (1967) 
discussed the existence of a higher-order interaction satisfying o, + w I I  = 2&, 
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k ,+k , ,  = 2k. He showed that it obeys the same stability criterion as its lower-order 
counterpart, but did not derive an equation for the instability growth rate. Higher- 
order resonances are of particular importance for surface gravity waves, since the n = 2 
solution obtained by Zakharov (1968) is the lowest-order resonance for this type of 
primary-wave motion, i.e. no n = 1 solution exists. Zakharov also mentioned the 
existence of an infinite set of resonances satisfying wI + w,, = n&, k ,  + k,, = nk, with 
n = 3,4, ... , co, but did not derive detailed properties. McLean (1982) presented finite- 
amplitude numerical results that support Zakharov’s claim that for small primary- 
wave amplitude, the growth rate scales with the nth power of that amplitude. Drazin 
(1977) found the same scaling for internal-wave resonance. 

This growth-rate scaling has generally been interpreted to mean that higher-order 
resonances of internal waves are unimportant, because n = 1 resonance must dominate 
when the wave amplitude is small. However, it also allows the possibility that the 
growth rate of a higher-order resonance might exceed that of lower-order resonances 
at finite primary-wave amplitude, and so become physically observable. A recent study 
by the present authors (manuscript in preparation) of linear instability of finite- 
amplitude gravity waves suggests that this is indeed the case. At large wave amplitude, 
they found growing shear-aligned instability whose characteristics agree with those 
found in recent studies of steady vertical profiles by Thorpe (1994) and Winters & Riley 
(1992). Figure 1 illustrates the growth rate of a shear-aligned instability as a function 
of wave amplitude for a (propagating) wave with a non-vertical phase elevation angle. 
At amplitudes for which the wave has overturned, the growth rate is very large - on the 
order of the Brunt-Vaisala frequency. As the wave amplitude is decreased, the 
continuously evolving solution exhibits remarkable behaviour not found for strictly 
vertical profiles. Rather than vanishing at a finite amplitude, the growth rate 
approaches zero with a simple + 5 power-law dependence. Inspection of the solution 
structure at small amplitude reveals two dominant components which satisfy the 
n = 5 higher-order resonant relations. (Other orders n of shear-aligned instability 
dominate in other regions of wave parameter space.) Figure 1 also shows that this n = 5 
instability overtakes the n = 1 parametric subharmonic instability at a wave amplitude 
just beyond the critical overturning value. This behaviour suggests that higher-order 
resonant instabilities are more relevant than has often been assumed. It prompted us 
to investigate in this paper their detailed nature at small wave amplitude, in the 
expectation that these simplified characteristics will improve our understanding of 
shear-aligned instabilities of large-amplitude waves. 

Many previous treatments of resonant interactions have utilized weakly nonlinear 
analysis, in which all wave components have comparable amplitudes. However, Mied 
(1976), Drazin (1977), and Klostermeyer (1982) showed that a linear stability analysis 
of a finite-amplitude primary wave is sufficient to characterize resonant instabilities. 
Indeed some analyses which begin with a weakly nonlinear formulation of resonances 
eventually resort to linearization (e.g. Hasselmann 1967; Yeh & Liu 1981). Although 
the weakly nonlinear approach is powerful, higher-order theory becomes progressively 
more difficult to formulate. A linear formulation will allow us to derive equations that 
apply to arbitrary orders of resonance, for the restricted set of interactions in which one 
component dominates. 

Mied (1976) and Klostermeyer (1982) used Floquet analyses to derive two- 
dimensional equations describing linear instabilities of finite-amplitude gravity waves, 
and solved them for selected values of wave amplitude and frequency. Drazin 
(1977) used a different Floquet formalism to derive three-dimensional equations 
describing a different type of gravity-wave instability. He expanded the two- 
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Wave amplitude, 2 
FIGURE 1 .  The solid line gives the growth rzte (in units of Brunt-Vaisala frequency N )  of a shear- 
aligned instability versus wave amplitude A, for a propagating gravity wave with phase elevation 
angle 0 = 75". The vertical dashed line marks thesritical amplitude for vertical overturning. The line 
with long dashes is an extrapolation of the small-A dependence (slope 5). For comparison, the growth 
rate of two-dimensional n 1 parametric subharmonic instability (PSI) is also shown (densely dotted_ 
line) for the same finite-A wave. The line with slope 1 (sparse dots) extrapolates the small-A 
asymptotic growth rate of PSI. 

dimensional form of these equations in powers of primary-wave amplitude to 
investigate resonant instabilities of small-amplitude waves, and included a short 
qualitative discussion of higher-order resonances. As noted by Drazin, it is not always 
feasible to relate his modes of instability to those obtained by Mied and Klostermeyer. 
Whereas the latter's equations describe temporal instability, in which a disturbance 
grows in time while remaining bounded in space, Drain's  equations describe a 
different type of instability, in which a disturbance grows with primary-wave phase. 
Thus, on a plane of constant phase, the unstable modes calculated by Drazin do not 
grow in time, in contrast to the temporally growing modes we wish to consider. 

In $2 we apply the equations of Mied and Klostermeyer to three-dimensional 
disturbances, and expand the solution in powers of primary-wave amplitude. 
Section 3 gives the disturbance wavenumber and frequency relations. We derive 
equations for the instability growth rate and energy budget in $4. We also 
present numerical results illustrating the three-dimensional properties of resonant 
instabilities (4 5) ,  a discussion of instabilities comprising more than two disturbance 
components (96), and, in 4 7, an investigation of shear-aligned higher-order resonant 
instabilities. 
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2. Floquet analysis of temporal instabilities of internal gravity waves 
Consider a monochromatic finite-amplitude internal gravity wave with phase 

elevation angle 8, as sketched in figure 2. Taking the y-axis perpendicular to the plane 
of wave oscillation and propagation, we introduce rotated coordinates 6 and ‘t;l that are 
respectively perpendicular and parallel to the wavenumber vector. Assuming an 
inviscid, non-rotating uniform-Brunt-Vaisala-frequency fluid, the scaled Boussinesq 
equations governing an infinitesimal disturbance are 

a, u+ q u  + (a7, zl) w + a5p + b cos 8 = 0, (1 a)  
a,v+u”ap+a,p = 0, (1 b) 
a,w+zla,w+a,p-bsinO = 0, (1 c) 
a, b + ~ a : b  + (aq 6) w- u cos 8 + w sin o = 0, (1 4 
a E u + a , v + a , w  = 0, (1 e) 

where u = ut5+ ve”, + w t q  is the disturbance velocity, b is the disturbance buoyancy, p 
is the disturbance pressure, and a tilde denotes a primary-wave quantity. The time and 
distance scales used are the inverse of the Brunt-Vaisala frequency N and the inverse 
of the magnitude of the dimensional wavenumber 2, of the primary wave. The 
dimensionless primary-wave quantities may be written as 

L 

6 = -2A”sin(b, b“ = -2Acos4, (b = T-Gt,  6 = cos8, (2) 
where A” is the dimensionless amplitude of the primary wave. The neglect of rotation 
restricts the direct application of the results to gravity waves with phase elevation 
angles not too near vertical. The neglect of products of disturbance quantities restricts 
the analysis to disturbances that are infinitesimal relative to the primary-wave 
amplitude, i.e. if the dimensionless disturbance velocity scale (relative to N /  lldl) is e, 
then 

€ < 2. ( 3 )  
The linearity of (1) and the sinusoidal nature of the primary-wave coefficients entail 

a general form of solution prescribed by Floquet theory. Defining a dynamic variable 
vector 

the solution can be written as 
D = (u, v, w, b , ~ ) ~ ,  (4) 

where s is a complex coefficient comprising the disturbance growth rate s, and relative 
frequency si (observed from fixed primary-wave phase), K and h are the real 5 and y 
disturbance wavenumbers, p is the real Floquet parameter that determines the 
modulation of the disturbance relative to the primary wave period (i.e. if p can be 
written as a rational number, then the modulation period is the primary-wave period 
multiplied by the lowest denominator). The linearity of (1) leaves D undetermined to 
a multiplicative scalar coefficient, whose order is E by assumption. Equivalent forms of 
solution have been used by Mied (1976) and Klostermeyer (1982) to investigate two- 
dimensional disturbances of internal gravity waves; McLean (1982) used a similar form 
to investigate the stability of finite-amplitude surface waves. As noted in the 
introduction, Drazin (1977) used a different Floquet formulation. In our notation, he 
imposed imaginary s and solved for complex p, yielding solutions with non-zero Imb)  
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FIGURE 2. Orientation of our coordinate system, and schematic of the phase relation of the 
primary wave fields. 

which grow in wave phase. Our treatment imposes real p and solves for complex s, 
yielding temporally unstable solutions with positive Re(s) (Re and Im denote real and 
imaginary parts). 

Our analysis departs from that of Mied and Klostermeyer in that it assumes small 
primary-wave amplitude A" (but always A" 9 t), and expands s and D ,  in powers of A": 

With the form assumed above, the perturbation coefficients so) and Dg) are O(1). It is 
valid to investigate the solution of the linearized disturbance equations to arbitrary 
order in primary-wave amplitude 2, say Z,', as long as the disturbance velocity scale 
is much smaller (i.e. t < A"J), because the terms ignored in the linearization (equation 
(1)) are O(t'), and the smallest investigated terms are then O ( d J ) .  We will examine the 
solutions in the three-dimensional disturbance wavenumber space ( K ,  h , , ~ ) .  

We will also use solutions of the finite-A" equations, (l), at small A" to verify the 
results obtained using the above power-series technique. These solutions are obtained 
from the eigenvalue equations that result when the Floquet form of solution (equation 
( 5 ) )  is substituted into (l), and the Floquet sum is truncated suitably. Our finite-2 
method is directly analogous to that used by Klostermeyer (1982) for two-dimensional 
disturbances. Upon specification of 2, 0, K ,  A, and p, the eigenvalue equation is solved 
to find all the growing solutions, using standard EISPACK software for obtaining 
matrix eigenvalues (s) and eigenvectors (Drn).  For the small A" values used here, the 
required truncations are quite modest (i.e. no more severe than - 10 6 m ,< 10). 
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3. Disturbance wavenumbers and frequencies 
Small-A” theory of resonant interactions requires an assumption regarding the 

number of leading-order (O(s)) disturbance components that participate in the 
interaction; this is equivalent to the number of non-vanishing coefficients D ,  in the 
Floquet expansion ( 5 )  in the limit J+ 0 (but always A” + c). We refer to this number 
as M .  In §$3-5, we consider only resonant interactions of the form M = 2, as is conven- 
tional in weakly nonlinear analyses. The resulting interactions will involve the finite- 
amplitude primary wave plus two infinitesimal disturbance components in the limit 
A”+ 0; for small but finite 2, higher-order disturbance components also contribute, and 
are included in our analysis. Solutions involving only one O(e) disturbance component 
( M  = 1) do not exist for x-20. The existence and interpretation of solutions involving 
more than two O(e) disturbance components ( M  > 2) will be investigated in $6. 

The general solution ( 5 )  of equation (1) is invariant under the transformation 

It follows that there exists a countably infinite set of identical solutions, or echoes, each 
shifted from its neighbour by 1 in the p-direction. This symmetry allows us, without 
loss of generality, to set the index of one of the two O(e) components to m = 0. We 
denote the other as m = -n,  where n is the index separation of the two dominant 
disturbance components. 

The leading-order (O(c)) disturbance solution is obtained by setting A” = 0 (i.e. u” = 
6 = 0) in (1) and (6). This uncouples the two disturbance components; each must 
independently and simultaneously satisfy the same equations that govern the primary 
wave. Because of this do) is purely imaginary [ = isdo’]. Thus, in the limit i+ 0, the three 
components are all freely propagating waves. 

The resonant condition follows immediately from the Floquet form of solution 
(equation (5) ) ,  which we convert to the wave form exp [i(k.x- wt) ] ,  with w assumed 
non-negative. Let the imaginary time coefficients in the Floquet solution ( 5 )  (including 
that contained in 4) for the two disturbance waves in the limit A”+ 0 be designated Q, 
and 52-,, where 

There are three relevant cases, according to the signs of these two quantities: 

case 1 : R, > 0, R-, > 0 

- 
0, = s y  -p6,  k, = (-K, - A  

wII  = s ~ 0 ) - ( p - n ) 6 ,  
w I I  - w, = n6,  

k,, = ( - K ,  -A ,  - p + n ) ,  
k,, - k, = nk; 

case 2:  52, < 0, 52-, < 0 

w, = -s,(O) +p6, k, = (6 AP), 
w,, = -s,’o)+(p-n)G, k,, = (K,A, ,u-n) ,  

k,-k,, = n i t ;  W ,  - w I I  = n6,  
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(9 

where I and I I  denote the two dominant (O(E))  disturbance components, and we have 
used, according to our scaling, k = d,,  the unit vector in the rl-direction. The first two 
cases are referred to as difference interactions. Just as n = 1 difference interactions are 
neutrally stable, so are higher-order difference interactions (Hasselmann 1967). Our 
finite-2 numerical solutions confirm that difference interactions remain neutrally stable 
as the primary-wave amplitude increases, and hence do not appear to be physically 
important. The third case above is referred to as a sum interaction; in this type of 
interaction the two disturbance waves grow at the expense of the primary wave. The 
right-hand side of (9 c) shows that the index separation n of the two dominant Floquet 
disturbance elements determines how many times the primary wave participates in the 
interaction. 

For tz = 1, we recover the triad interactions of Phillips (1960). For n = 2, we 
recover the higher-order interaction discussed by Hasselmann (1967). For n > 2, we 
recover an infinite set of higher-order interactions similar to those discussed by 
Drazin (1977), and by Zakharov (1968) in relation to surface gravity waves. It is 
tempting to refer to the interactions satisfying (9) as ' order-n resonant triads' 
because they involve one primary wave plus two disturbance components, or three 
waves in all. However, this would be inconsistent with previous usage (e.g. Hasselmann 
1967; Craik 1985), in which these interactions are referred to as (n+2)-wave 
interactions in which the primary wave participates 12 times. For clarity and consistency, 
we classify resonant instabilities using two integers: n ,  the number of times the 
primary wave participates, and M ,  the number of o(tj disturbance-wave 
components ( M  = 2 here). 

Each of the two disturbance waves must satisfy the dispersion relation of the 
uncoupled equations that result from substitution of A" = 0 into (1). For disturbances 
comprising two gravity waves (see Appendix A for disturbances involving vortical or 
acoustic modes), the relevant dispersion relations can be written as follows : 

n )  cos 6 + K sin 01' + A' "' 
(p - n)' + K 2  + A' ) . (10) 

cos 0 + K sin el2 + A2 ''' 1 , (I)/, = ('b- w, = (L" 

i +i 01- IZ)' + K' + A' i L,,, = ( pu"+K"A2  

/ P  + K 2  + A 2  

Substitution of (1 0) into the resonant-sum frequency condition of (9 c) yields an 
equation in K,  A, p that governs the set of frequencies and wavenumbers of the 
disturbance waves for which the resonant-sum conditions are satisfied : 

[(p - n) cos i? + K sin 81' + A' ' I 2  cos H + K sin 61' + A2 '1' -nG = 0. (11) 

For fixed n and 0, the solution of (11) represents a two-dimensional surface in 
( K ,  A,p) = k ,  space (i.e. k,/ = /i for the m = 0 component). Then (10) yields wI and 
w I I  corresponding to any point on this A4 = 2 resonant-sum-interaction surface. 
Since wJ < 1 and mII  < 1, no solution exists for G > 2 / ~ ;  equation (2) yields the 
Boussinesq restriction 

for the presence of higher-order resonant instability with n > 2. 
t) 3 cos-'(2/n) (12) 
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-u.5 0 0.5 -0.5 0 0.5

Floquet modulation, ,B Floquet modulation, p
FIGURE 3. Existence of higher-order resonant solutions of the two-dimensional equations.
Finite-A” growth-rate contours (a), with A”  = 0.02, 0 = 30”,  h  = 0, are compared with h  = 0 cuts
(6)  of n  = 1 (solid) and 2 (dashed) resonant surfaces and their  echoes.

The O(s)  equations ((l), (2) with A” = 0)) also yield a polarization relation for each
of the two O(E) disturbance internal gravity waves, giving the solution at this order:

D(O)  = p
0

D(O)  = rp0, -7z --12, (Isa,  b)
I

KQi,--sin20-(LL+m)sin6cosB
\

h(L$  - 1)
P,  =  (p+m)Qg-KsintlcosB-(p+m)cos20 ,

iQ,[&+m)sin0-Kcos0]
(134

\ sz,-szk /
where .Q, is given by (8), and Y is the ratio of disturbance wave amplitudes; the overall
arbitrary multiplier is included in c in (6). The ratio of amplitudes Y is not given by the
O(s)  analysis, because the two disturbance components are uncoupled to O(e); it is
fixed at O(eA”),  as is shown in $4.

Figure 3 demonstrates that Mied’s (1976) and Klostermeyer’s (1982) two-
dimensional equations possess solutions representing higher-order resonances. Figure
3(a) shows growth-rate contours of the fastest-gr_owing  mode over two-dimensional
disturbance-wavenumber (K,  ,IL) space, from finite-A solutions obtained over a fine grid,
with fixed A” = 0.02, 8 = 30”, h = 0. The method used to obtain these solutions is
described at the end of $2. Comparison with figure 3(b) reveals that the positions of
the contour ridgetops agree well with the h = 0 cross-sections of the n = 1 and n = 2
resonant surfaces obtained from (1 l), and their echoes. The ‘fading out’ of the 12 = 2
contours in figure 3(a) where they approach the K = h = 0 axis is due to the inability
of finite grid spacing to resolve the extremely narrow n = 2 resonance. Note that n > 2
resonances involving only gravity waves do not exist for B = 30” (equation (12)).
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FIGURE 4. Coupling between Floquet-element coefficients D:) (equations (5), (6)), for the first four 
resonant orters n, under the M = 2 assumption. Diagonal arrows indicate primary-wave couplings 
via zi and b in ( l ) ,  while vertical arrows denote growth-rate coupling via c?, in (1). Solid arrows 
represent couplings between coefficients OX', labelled x , which contribute to the leading-order 
[O(eA ")I growth-rate calculation, while dashed arrows represent couplings with coefficients DX1, 
labelled 0, which do not. 
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4. Disturbance growth rate and energy budget 
An analysis of higher order in x i s  required to calculate the disturbance growth rate 

and energy budget over the resonant surface. Substitution of (4), ( 5 )  and (6) into (1) 
and separating by functional form results in an infinite series of perturbation 
equations. Each set of five equations can be characterized by an ordered pair (m,j), 
representing the corresponding powers of ei@ (Floquet index) and 2, respectively. Since 
the primary wave fields ii and b" (equation (2)) comprise terms proportional to xeki@, 
each set of equations relates the dynamic-variable coefficients of A " j  to those of 2j-l 
with adjacent Floquet indices. In other words, the primary-wave terms couple Dg) to 
Dg:;) and 0:;;). Figure 4 displays the patterns of couplings among dynamic-variable 
coefficients for powers of A" up t o j  = n, for the first four values of n. Since the Floquet 
indices of the two dominant O(E) disturbance components (represented in figure 4 by 
the x symbols at (m,j) = (0,O) and (- n, 0)) are separated by n, their interaction with 
the primary wave comprises n successive couplings. This causes the dimensionless 
growth rate to be O(A""); its leading-order calculation requires analysis to be carried 
out to O(eA""). The dynamic-variable coefficients and couplings among them that 
contribute to the calculation of growth rate are represented by the x symbols and solid 
arrows in figure 4. The other coefficients and couplings (0 symbols and dashed arrows) 
do not contribute to this calculation; they do however contribute to frequency shifts and 
resonant-surface deformations, which we have calculated, but omit here for brevity. 

For given n the above discussion leads to two systems of perturbation equations of 
order sA" up to eA"": one for the leftward coupling chain in figure 4 from (m, j )  = 
(0,O) to (- n, n), and one for the rightward coupling chain from (- n, 0) to (0, n).  It can 
be seen that for even n, the two coupling chains share a common dynamic-variable 
coefficient [D?$]. This coefficient separates into two additive components, one for 
each direction. To avoid ambiguity we use separate designations for the contributions 
to the dynamic-variable coefficients D1;2) : Lz) for the contributions from the leftward 
coupling chain, and Rg) for the contributions from the rightward coupling chain. Then 

\ I  I LLy \ -LP, 
L?; 0 

LF;l) 0 

\ 

> (154 - - 

\ L Wl-n 1 L ( n )  -n , -SP-,sr' r , 

' WI-72 ' RY!, ' 
RrJn 

R W-, R Y 1 )  
- - 

R wz-?l 
- RP-, r 

0 

0 
\ R W, , RC) ~ -SP,s$"' 
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(16c,d) 

iQ lrt 0 0 cose i K  

0 i0, 0 0 ih 
0 0 isZ,,, -sin0 i(p+rn) 

-cos8 0 sin0 isZ, 0 
-K h / i + r n  0 0 

, R =  

. s =  

1 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 0  

(1 

1 1  

2 

are the wave submatrix for the mth element, growth-rate coupling submatrix, and left 
and right primary-wave coupling submatrices, respectively; Qm is given by (8), and s$n) 
is the leading-order growth-rate coefficient Re[s(”)]. Equation (1 5 )  gives the growth rate 
for any order n of resonant instability, as a function of phase elevation angle 6’ and 
position on the resonant surface ( K ,  A, p). Details of its solution are given in Appendix 
B. We note that equations similar to (15) can generally be derived for Floquet systems. 

Equation (15) can also be used to obtain an energy budget, which helps to 
characterize the mechanism of instability. Straightforward manipulation of ( 1 )  leads to 
the following normalization-insensitive equations for the spatially averaged energy 
budget : 

where 
. fKE = f S H R + f V H F ’  . f P E  = f B O Y - j ; 7 H F ,  . f SHR+. fBOI . .  = ‘7 (17) 

f K E  = [ ( K E ) / ( T E ) 1 7  f f > E  = [(PE)/(TE)l, f S H R  = (SHR)/[2s,(TE)1, 

. f ; ’HF = (VHF)/[2sr(TE)1, . fDOY = (B0Y)/[2s,(TE)17 
( ) represents spatial average, 

KE = (u2 + U‘ + ~ . ‘ ) / 2 ,  PE = b’/2, TE = KE +PE, ( 1 8 )  
SHR = - Z a  zI(uw), VHF = -cos 0(6u) + sin H(hw), (19) 

and all disturbance quantities are now the real parts of their earlier counterparts. Then 
, f K E  and f p E  are the proportions of disturbance kinetic and potential energy, f,,, and 
f,,, represent the relative importance of shear conversion and buoyancy conversion 
in the extraction of primary-wave energy, andf;.,, represents the relative vertical heat 
flux. While f,, and fF,, are constrained to be between 0 and l , , f sHR, . f l ,HF,  and f B o y  are 
not. 

For small 2, (KE) and (PE) are O(c2), (SHR), (VHF), (BOY) are O(s2A”n), and 
s, = O(A”n), so that all the fractional quantities are O(1). There are lower-order terms 
in the equations for SHR, VHF, and BOY, but they do not contribute to the spatial 
averages. Calculation of the leading-order (KE) and (PE) requires only the O(c) 
solution. Calculation of the leading-order (SHR) and (BOY) requires solutions of 
O(6) up to O(t>-’). The direct calculation of (VHF) requires a higher-order solution; 
however, it can be obtained indirectly from the energy-budget equations (17). As noted 
by Yeh & Liu (1981) for n = 1, equipartition of energy 

BOY = - Z7 6(bw), 

f K E = f P E = 0 . 5  (20) 
applies to resonant interactions involving only internal-gravity-wave components, 
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(a )  n = l  B=60" 

( d ) n = 4  6'=80" 

2 

FIGURE 5. Resonant-sum surfaces for the first four resonant orders n, for selected primary-wave 
phase elevation angles 8. - k,, is also a solution; this reflection is not shown. The solution shown does 
noivary with echo number; for the chosen echo, k!, = K ,  k,, p, k,, = A. The primary wavenumber 
is k = E7, and the other disturbance wavenumber is k,, = nk-k,. 

because it applies to internal gravity waves individually. The leading-order non- 
cancelling terms in the calculation of (SHR) and (BOY) are 

e2A- 12-1 

2 m=o 
(SHR) = 2 C Re [ulm,) ~l_x!;~)* + u!x?;"' w:m,)*] + O(e2 *+'), (21 a)  

' m=o 

where ug:, wg), and bg) are components of I,:) and Rg) (equations (4), (14)), as 
calculated from (15). Equations (21) will be used in $7 to characterize the energy 
transfer. 

5. Three-dimensional disturbances 
Examples of resonant-sum surfaces in wavenumber space of one of the two 

disturbance components are displayed in figure 5 for the first four orders of resonance 
n, and the corresponding frequencies are displayed in figure 6. slo) can be recovered 
using (8) with wz = 0 and Q, = - w I .  The two-dimensional n = 1 resonant solutions 
( A  = 0 perimeters in figures 5 a and 6 a) were first produced by Phillips (1966). We can use 
these figures to investigate the existence of wave-shear-aligned resonant instabilities. 
Since the gravity-wave shear flow is directed along the [-axis, these have K = 0 (i.e. 
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2 

1 

Phase-aligned wavenumber, kg 

FIGURE 6 .  Contours of disturbance-component frequency ratio o , / n d  over the resonant surfaces 
shown in figure 5.  Long-dash curves represent w , / n 3  = 1 / 2 ;  solid (short-dash) curves represent 
progressively larger (smaller) values, with linear increment 0. I .  Primary-wave frequency is 
2 = cosH; the other disturbance component frequency is w l l  = n C - w r .  

k,, = k I I c  = 0 for the two components of resonant instability). As seen in figures 5(a)  
and 6 ( a ) ,  the n = 1 resonant-sum surface does not cross the k ,  = 0 plane; therefore, 
as noted in the Introduction, there are no n = 1 shear-aligned instabilities. The n = 2 
surface in figure S(h)  just touches the k,, = 0 plane; however, we have found that the 
disturbance is always neutrally stable there. This is the case at all phase elevation angles 
8. In contrast, the n = 3, 4 surfaces in figures 5 ( c )  and 5 ( d )  cross the k,, = 0 plane at 
all k,,,  = / I  values. and we have found positive growth rates there. This holds for all 
n 3 3 and all H satisfying (12). Therefore, higher-order resonant instabilities with n 3 3 
include growing shear-aligned instabilities. The n 3 3 resonant surfaces (e.g. figures 5 c 
and S t l )  all contain a central shear-aligned point, k,?,( = p )  = n/2 ,  k,, = 0, at which the 
frequencies of the two components both equal nG/2 (figures 6 c  and 6 4 ;  this point of 
symmetry will be shown to be the preferred shear-aligned disturbance in 97. 

Results for the range -90” < 0 < 0, corresponding to upward energy propagation, 
are easily recovered using the symmetry of the equations, as follows: 

( 0 , ~ )  * ( -0 ,  - K ) ,  (uvL,t.vL3 f i’m,b, ,~v,)+(- l)Y-uTrL,~.,, M ’ ~ ~ ,  - b m , ~ m ) .  (22) 
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n = 3  1 I (dl 8=75" 
(c) n = 2  e = 600 ,,,* 

/, ' I I' , 

Amplitude, A Amplitude, A 
FIGURE 7. Verification of small-2 equatio_ns at various points 0-n the n = 2 and 3 re_sonant surfaces. 
We compare s, and&H, from exact finite-A calculations, to sp) A" and (SHR)/2s$")An, from ( 1  5 )  and 
(21 a)  for three different values of (K,,/L). For n = 2 these are solid (0.5, -2), short dash ( 1 ,  - l) ,  long 
dash (0.55,l . l) ;  for n = 3 these are solid (0,1.5), short dash (0.3,l .Q long dash (0.1,4.2); h i s  chosen 
on the resonant surface. Slopes for s, error approach 4 (n  = 2) and 5 (n = 3); slopes for fv,, error 
approach 2. 

This transformation leaves the time dependence and energy budget unchanged. Thus, 
the physically important characteristics of the instability do not depend on whether the 
phase progression is upward or downward. Also note that A appears in the resonant 
equation (1 1) only as A 2 ;  therefore - A  is also a solution. 

Figure 7 provides numerical verification of the small-A" analysis of $4. The curves 
shown were obtained by comparing the predicted leading-order resonant growth rates 
(15) and energy budget (21) to exact numerical solutions of the original equations (1) 
over a range of finite but small 2, at various locations on the resonant surface, for two 
different resonant orders (n  = 2,3). The procedures used to solve (15) are described in 
Appendix B ; equation (21) is then evaluated directly. The eigenvalue procedure used 
to obtain exact finite-A" numerical solutions of (1) is described in $2. The linearity of 
the curves in the small-A" region indicates power-law dependence for errors in the 
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Floquet modulation, ,u 
FKURE 8. Expanded view of an M = 3 curve (solid curve), which is the intersection of two M = 2 
resonant surhces ( t i  = 1,2). Long-dash (dotted) curves bound the t i  = 1 (2) surface projection, which 
is hatched by diagonal lines with negative (positive) slope; where both exist, the lines of the hidden 
surface are dotted. The horizontal segment indicates the cross-section investigated in figures 9 and 10. 

resonant solutions. The limiting slopes of these curves show that at  the chosen 
locations, our equations are correct to at least the expected orders in A”. 

Presentation of the growth rates over the resonant surfaces is hampered by the 
appearance of curves on which ,x/”)  = oc ; for given 1 2 .  there are n-  1 such curves. This 
represents an apparent difficulty for this theory that will be resolved in the next Section. 

6. Interactions involving more than two disturbance components ( M  > 2) 
Recall that at the beginning of $ 3 ,  we made an assumption restricting the number of 

non-vanishing disturbance components that survive as A”-> 0 to the value A4 = 2. The 

which more than two elements in the Floquet sum do not vanish as A”+ 0, in violation 
of the M = 2 assumption. On these curves, one of the Floquet elements (equation (5)) 
between -t i  and 0 has a frequency (equation (8)) that satisfies the gravity-wave 
dispersion relation. This creates a linear dependence in the corresponding W), 
submatrix in ( I  5). Thus the result s sf^") = rn arises because J:.’~) 2 is an inappropriate 
functional representation of the true growth rate .sr, which is finite. We will show that 
in the vicinity of these curves, the solution undergoes an order transition to a solution 
with lower-order growth rate; in this sense sj”) = rx is as faithful a representation of the 
solution as can be obtained using the functional representation that follows from the 
violated A4 = 2 assumption. 

,p) ~ = ?r_ contours described above are precisely those locations in ( ~ , h , , u )  space at 
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FIGURE 9. Case study of the breakdown of the small-2 resonant equations where the M = 2 
assumption is violated. The resonant n = 1 (lo>&-dash) and n = 2 (short-dash) solutions are 
compared to exact finite-A solutions of (11, with A = 0.01, along the K = - 1 cut shown in figure 8. 
Solid (dotted) curves represent the finite-A ridgetop (see figure 1Ou and text) solution starting near 
the n = 1 (2) solution at p = 1.7 and moving rightward. The direction of motion in p does not affect 
the result. 

Each disturbance component that participates in the interaction introduces another 
dispersion relation that must be satisfied. No matter how many components participate, 
there is only one free parameter for given ( K ,  A, p ) :  ~6'). Thus, in ( K ,  A, p)-space, M = 2 
interactions occupy two-dimensional surfaces (as shown in figure 5 ) ;  A4 = 3 
interactions occupy curves (the s y )  = co curves of present interest) ; M = 4 interactions 
occupy isolated points (where two S?) = co contours cross); and M > 4 interactions 
cannot occur except at particular values of phase elevation angle 8. 

The M = 3 curves discussed above also represent the intersection curves of two 
A4 = 2 surfaces. Here three Floquet elements, instead of two, satisfy the gravity-wave 
dispersion relation and thus have non-zero coefficients as z+ 0. These three elements 
allow three pairs, each of which can resonate with the primary wave. However, only 
two of the three interactions are unstable sum interactions; the other is necessarily a 
neutrally stable difference interaction. As an example, we focus on the intersection of 
the 8 = 60°, n = 2 surface in figure 5(b) with the B = 60°, n = 1 surface in figure 5(a). 
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FIGURE 10. Expanded view of figure 9 in the region near the-M = 3 intersection. Frame (a) also shows 
superimposed growth-rate contours from the exact finite-A solutions, which illustrate the ridgelike 
nature of the resonances, and the order transition. 

Figure 8 shows an expanded view of this intersection. In the vicinity of the intersection, 
both M = 2 solutions from $4 break down. 

In order to examine the true solution in this region, we turn to exact solutions of the 
original disturbance equations (1) at finite but small 2, along a K = - 1 cut that passes 
through the intersection, as indicated in figure 8. Figure 9 compares exact finite-2 
solutions (for A" = 0.01) to the M = 2 resonant-sum solutions. It can be seen that the 
two agree well, except near the intersection point where the M = 2 assumption fails. 
This provides verification of ( I  5 )  for n = 1 and 2, as well as an indication of the nature 
of the failure of the A4 = 2 solutions where the assumptions are violated. 

Figure 10 provides a closeup view of the solutions in the region of the intersection. 
Figure 10 ( a )  includes exact finite-is, contours showing resonance broadening due to 
finite amplitude. There are two non-intersecting finite-il" ridges, on contrast to the 
A4 = 2 prediction that the iz = 1,2 resonant surfaces cross. Furthermore, in progressing 
along either ridgetop past the M = 2 intersection, there is a continuous transition from 
one order to the other. In the vicinity of the intersection, there are three dominant 
Floquet elements. Moving away from the intersection in one direction, one element 
decays, leaving an n = 1 triad; moving in the other direction, a different element decays, 
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FIGURE 1 1 .  Growth-rate coefficient s ) ~ )  for the lowest-order (n  = 3) shear-aligned instability, as a 

function of Floquet modulation ,LL for various primary-wave phase elevation angles 0. 

leaving an n = 2 interaction. This indicates that the two portions of the n = 2 resonant 
surface on either side of the intersection curve in figure 8 do not connect to each other, 
and likewise for the two portions of the n = 1 surface. Instead, each undergoes an order 
transition to connect to one of the surface portions of the other order. This means that 
the various orders of resonant interactions connect to one another even in the limit 
A”+-O. We have verified that this coalescence is not a spurious effect associated with 
roundoff amplification in the eigenvalue algorithm and/or validity of the Floquet form 
of solution. 

No additional growing solution appears in the vicinity of the intersection curve, 
which is also an M = 3 resonant curve. This means that interactions involving three 
infinitesimal disturbance waves and the primary wave do not form a distinct linearly 
independent family of solutions, but rather link together two M = 2 solutions of 
different order where the M = 2 resonant surfaces appear to intersect. Near this 
intersection both M = 2 solutions break down, while the true solutions each undergo 
order transitions as they cross over. 

7. Shear-aligned disturbances 
Now that we have identified the regions in disturbance ( K ,  A, p)-space in which 

M = 2 theory breaks down, we are free to examine the solutions elsewhere. We now 
consider wave-shear-aligned disturbances. As pointed out in 4 5 ,  the lowest-order shear- 
aligned resonant instabilities are of order n = 3. These exist for 6’ > cosp1(2/3) N 48” 
(equation (12)). The n = 3 growth-rate plots in figure 11 show that the central 
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FIGURE. 12. Characteristics of the first four orders (n = 3, 4, 5, 6) of shear-aligned instability, as 
function of 8. Two-period modulation (half-integer p )  is preferred by n = 3,5; single-period 
modulation (integer p) is preferred by n = 4,6. All prefer zero relative frequency. Disturbance energy 
is equally partitioned between kinetic and potential. 

symmetry point, ,u = 1.5, is the preferred Floquet modulation among shear-aligned 
disturbances for all phase elevation angles. This point is never on or near an M = 3 
curve for any 8, so the M = 2 solution is valid there. The echo solutions have peak ,u 
displaced by integer values, but all have a lowest denominator of 2. This means that 
the lowest-order shear-aligned resonant instability prefers subharmonic modulation. 
These preferred solutions also have = 0, and so are stationary with respect to wave 
phase. Similar results hold for even higher orders, except that the even orders prefer 
single-period modulation (integer p values). 

Figure 12 displays the small-zcharacteristics of the preferred n = 3,4 ,5  and 6 shear- 
aligned resonant instabilities. as functions of phase elevation angle 8. For each 12, as 8 
increases from cos-l(2/n) (equation (12)), preferred spanwise wavenumber (a)  decreases 
monotonically from co, while the growth rate coefficient (b )  decreases monotonically. 
(Note that growth-rate coefficients of different orders are not comparable, because the 
functional form of growth rate JY) A". varies with n.) Disturbance energy extraction (c )  
changes from dominantly shear conversion to dominantly buoyancy conversion, but 
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FIGURE 13. Contour patterns of growth-rate coefficient sL3) near the shear-aligned maximum, 
obtained from (15), for a variety of primary-wave phase elevation angles 0. 

stays within a fairly narrow band throughout. These shear-aligned instabilities convert 
potential energy of the primary wave into disturbance kinetic energy, even though the 
wave amplitude is too small to cause overturning of isentropes. This conversion is 
possible because the isentropes are not horizontal. Similar reasoning explains the 
absence of threshold amplitude for slantwise static instability (Hines 1971, 1988). 

Although ,u = 1.5 is the preferred n = 3 shear-aligned disturbance for all primary- 
wave phase elevation angles 8, this point is not always a two-dimensional growth-rate 
maximum on the resonant surface; for 8 > 60°, it is a saddlepoint. This effect is 
illustrated in figure 13. This raises the possibility that an oblique, rather than strictly 
shear-aligned, orientation is preferred for some 8. Further investigation of this effect 
using the present small-A" M = 2 analysis is hampered by the presence of M = 3 
intersections, near which M = 2 theory breaks down. Therefore, we postpone the 
detailed analysis of oblique disturbances to a future paper on finite-amplitude waves, 
using a method that does not share this difficulty. 

8. Conclusions 
We have presented a theory for treating resonant temporal instabilities of a primary 

wave. The linear formulation offers some advantages over the traditional weakly 
nonlinear formulation, including a simplified treatment of higher-order resonances. 
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Our technique can, in principle, be applied to any small-amplitude fluid wave motion. 
In this paper, we have applied it to internal gravity waves, with the following main 
results : 

(i) We have calculated the wavenumbers, frequencies, growth rates, and energy 
budgets for higher-order resonant instabilities of small-amplitude internal 
gravity waves, that reduce to two wave components satisfying w I + w I I  = n6,  
k ,$k , ,  = n i .  

(ii) Only higher-order resonant instabilities with n 3 3 can align with the wave 
shear flow; these are restricted to waves with frequency below 2 N / n .  The 
preferred shear-aligned instability corresponds to a symmetry in the resonant 
surface, for which both dominant components have frequency n6/2 at all wave 
frequencies c;i. Here, the disturbance is stationary with respect to wave phase; 
odd-n resonances prefer two-period modulation in wave phase, and even-n 
resonances prefer single-period modulation. They can convert wave potential 
energy into kinetic energy, even in the limit of small wave amplitude, in which 
isentropes are not vertically overturned. 

(iii) The various orders of resonant interaction connect to each other in disturbance- 
wavenumber space. Near the intersection curve of their resonant surfaces, two 
solutions of different order undergo order transitions to ‘switch over’ to each 
other. 

(ivj Interactions involving three or more distinct infinitesimal components and one 
finite primary wave (participating in the resonance one or more times) are not 
distinct classes of solutions. Instead, they represent the order transitions 
referred to above. 
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Appendix A 
The freely propagating wave equations ((l), (2) with i=  0) allow two types of 

natural modes : gravity wave and vortical. Pure vortical motion involves steady 
unidirectional horizontal flow whose amplitude varies over a plane normal to the flow 
direction; such motion carries vertical vorticity. The vortical dispersion relation is 
w = 0, whence it follows that two vortical modes cannot resonate with a primary gravity 
wave. Dong & Yeh (1988) proposed a non-resonant vortical-pair instability that exists 
only for 2 > ( L 2 sin 0j-I; we cannot investigate this instability and possible higher- 
order counterparts in the context of the present analysis because the proposed critical 
amplitude is too large for small-2 theory. This leaves two possible arrangements for 
the disturbance pair: one gravity wave plus one vortical mode, and two gravity waves. 
Any sum interaction involving one gravity wave plus one vortical mode is 
simultaneously a difference interaction. We have verified numerically the implication 
that this combination cannot constitute a growing disturbance in the limit of small 2. 
Thus, all growing A4 = 2 resonant interactions allowed by (1) involve three gravity 
waves. 
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Compressible equations would allow disturbance pairs in which one or both of the 
components are acoustic modes. Since for any gravity wave ol, < w,, the acoustic cutoff 
frequency, resonance involving acoustic modes must be higher-order ; the two 
arrangements above require n > wa/G and n > 2w,/G respectively. We have not 
investigated these acoustic resonances, as it is not clear that they are of atmospheric or 
oceanic importance. 

Compressibility also plays a secondary role in the high-frequency region of the 
atmospheric gravity-wave branch. This means that atmospheric application of (1) and 
(2) is restricted to primary-wave vertical wavelengths that are not large compared to 
the density scale height. In addition, disturbance solutions near the curves in 
wavenumber space on which (oI = 1 or w I I  = 1 depart slightly from their physical 
(acoustic-gravity wave) counterparts. We note that compressible effects cannot easily 
be incorporated into finite-A" calculations, because the linear primary-wave solution is 
no longer a solution of the nonlinear equations. 

We have also neglected effects of rotation. Therefore, solutions near the curves in 
wavenumber space on which wI = 0 and wII  = 0 (discontinuities in figure 5 )  depart 
from their physical counterparts. These discontinuities are located at 

(p, K )  = (ncos' O +  Q sin 8, ncos 8sin O f  Qcos 8) 

and (p, K )  = (n  sin2 O Q sin 8, - n cos 0 sin O f  Q cos O ) ,  where Q = (1 - n2 cos' O)lI2. 

Appendix B 
We solve the growth-rate equations, (15), as follows. The set of 10n equations 

(5 dynamic variables x 2 coupling chains x n steps in each chain) therein has 10n + 2  
unknowns : L?!, . . . , L?A, Rr?,,. . . , R r ) ,  sp), and r.  The latter two unknowns appear as 
a product in the last element on the right-hand side of (15a). This nonlinearity is 
removed by dividing (1 5 b) by 7, leaving the two variables sp) r and s F ) / r  on the right- 
hand side. The underdetermination (two less equations than variables) implies that the 
solution space of ( I  5 )  is a two-dimensional surface in 10n + 2 dimensional space, rather 
than a single point. However, the variation from one solution to another is entirely 
confined to the highest-order (in 2) subvectors LL? and R r ) ,  as follows. The two 
submatrices W-, and W, each contain a single linear dependence, because 52, and 52-, 
satisfy their respective dispersion relations, and the resonance condition, owing to the 
assumption that ( K ,  A, p) is on the resonant surface. Therefore, the addition of any wave 
solution to L?? or RP)  (i.e. solution of W, RP)  = 0 or W-, L?; = 0) does not affect the 
right-hand side. Because of this, the variables of greater interest -SF), r ,  and the lower 
orders (in 2) of Lg) and RE), for j = 1 ,  . . . , n - I ,  are independent of such additions; 
they are uniquely determined. This allows us to assign one of the five elements (e.g. 
pressure or buoyancy) in each of L?? and RP) ,  and still solve for the uniquely 
determined variables. The result is a system of 10n linear equations in 10n variables. 
For each chosen n, 8, and parameter set ( K ,  A, p) on the resonant surface, we solve this 
system efficiently as a series of 5 x 5 matrix equations, to obtain L?!, .. . , L(,) -n 3 

R??,/r, ..., R r ) / r ,  s F ) r ,  and s r ) / r ,  with LI",' and R r )  undetermined to a multiple of 
their respective wave solutions. Then s$") and r are recovered from s r )  r and s p ) / r .  Our 
calculation always results in s r )  being purely real and r being either purely real or 
purely imaginary. Finally, R?ln,. . . , R r )  are recovered from RYJJr,. . . , R r ' / r  and r .  
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